109 research outputs found

    Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease

    Get PDF
    BACKGROUND Behavioural disorders and psychological symptoms of Dementia (BPSD) are commonly observed in Alzheimer's disease (AD), and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM), we investigated the impact of white matter lesions (WMLs) on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI). METHODS Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up) and 26 healthy controls underwent magnetic resonance imaging (MRI) examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD. RESULTS Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs) and the severity of apathy. Regional grey matter atrophy did not account for any BPSD. CONCLUSIONS This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia

    Introducing axonal myelination in connectomics: a preliminary analysis of g-ratio distribution in healthy subjects

    Get PDF
    Microstructural imaging and connectomics are two research areas that hold great potential for investigating brain structure and function. Combining these two approaches can lead to a better and more complete characterization of the brain as a network. The aim of this work is characterizing the connectome from a novel perspective using the myelination measure given by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, whose aggregated value can now be estimated in vivo using MRI. In two different datasets of healthy subjects, we reconstructed the structural connectome and then used the g-ratio estimated from diffusion and magnetization transfer data to characterise the network structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio distribution across the edges of the graph did not show the power-law distribution observed using the number of streamlines as a weight. Second, connections involving regions related to motor and sensory functions were the highest in myelin content. We also observed significant differences in terms of the hub structure and the rich-club organization suggesting that connections involving hub regions present higher myelination than peripheral connections. Taken together, these findings offer a characterization of g-ratio distribution across the connectome in healthy subjects and lay the foundations for further investigating plasticity and pathology using a similar approach

    B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial

    Get PDF
    INTRODUCTION: An over-expression of CD19 has been shown in B cells of systemic sclerosis (SSc) and B cells are thought to contribute to the induction of skin fibrosis in the tight skin mouse model. The aim was to define the outcome on safety and the change in skin score after rituximab therapy in SSc patients and to correlate the clinical characteristics with the levels of interleukin (IL)-6 and with the immune cell infiltrate detected by immunohistochemistry. METHODS: Nine patients with SSc with mean age 40.9 +/- 11.1 years were treated with anti-CD20, 1 g at time 0 and after 14 days. Skin biopsy was performed at baseline and during the follow-up. B-cell activating factor (BAFF) and IL-6 levels were also determined at the follow-up times. RESULTS: After 6 months patients presented a median decrease of the skin score of 43.3% (range 21.1-64.0%), and a decrease in disease activity index and disease severity index. IL-6 levels decreased permanently during the follow up. After treatment, a complete depletion of peripheral blood B cells was observed in all but 2 patients. Only 3 patients presented CD20 positive cells in the biopsy of the involved skin at baseline. CONCLUSIONS: Anti-CD20 treatment has been well tolerated and SSc patients experienced an improvement of the skin score and of clinical symptoms. The clear fall in IL-6 levels could contribute to the skin fibrosis improvement, while the presence of B cells in the skin seems to be irrelevant with respect to the outcome after B cell depletion

    Altered bone development and turnover in transgenic mice over-expressing lipocalin-2 in bone

    Get PDF
    Lipocalin-2 (LCN2) is a protein largely expressed in many tissues, associated with different biological phenomena such as cellular differentiation, inflammation and cancer acting as a survival/apoptotic signal. We found that LCN2 was expressed during osteoblast differentiation and we generated transgenic (Tg) mice over-expressing LCN2 in bone. Tg mice were smaller and presented bone microarchitectural changes in both endochondral and intramembranous bones. In particular, Tg bones displayed a thinner layer of cortical bone and a decreased trabecular number. Osteoblast bone matrix deposition was reduced and osteoblast differentiation was slowed-down. Differences were also observed in the growth plate of young transgenic mice where chondrocyte displayed a more immature phenotype and a lower proliferation rate. In bone marrow cell cultures from transgenic mice, the number of osteoclast progenitors was increased whereas in vivo it was increased the number of mature osteoclasts expressing tartrate-resistant acid phosphatase (TRAP). Finally, while osteoprotegerin (OPG) levels remained unchanged, the expression of the conventional receptor activator of nuclear factor-κB ligand (RANKL) and of the IL-6 was enhanced in Tg mice. In conclusion, we found that LCN2 plays a role in bone development and turnover having both a negative effect on bone formation, by affecting growth plate development and interfering with osteoblast differentiation, and a positive effect on bone resorption by enhancing osteoclast compartment

    Disruption of neurite morphology parallels MS progression

    Get PDF
    Objectives: To apply advanced diffusion MRI methods to the study of normal appearing brain tissue in MS and examine their correlation with measures of clinical disability. Methods: A multi-compartment model of diffusion MRI called neurite orientation dispersion and density imaging (NODDI) was used to study 20 patients with relapsing-remitting (RR-) and 15 with secondary progressive (SP)-MS, and 20 healthy controls. Maps of NODDI were analyzed voxel-wise to assess the presence of abnormalities within the normal appearing brain tissue, and the association with disease severity. Standard diffusion tensor imaging (DTI) parameters were also computed for comparing the two techniques. Results: MS patients showed reduced neurite density and increased orientation dispersion compared to controls in several brain areas (P<0.05), with SPMS patients having more widespread abnormalities. DTI indices were also sensitive to some changes. In addition, SPMS patients showed reduced orientation dispersion in the thalamus and caudate nucleus. These abnormalities were associated with scores of disease severity (P<0.05). The association with the MS functional composite score was higher in SPMS compared to RRMS patients. Conclusions: NODDI and DTI findings are largely overlapping. Nevertheless, NODDI helps to interpret previous findings of increased anisotropy in the thalamus of MS patients, and are consistent with the degeneration of selective axon populations

    Cerebral Perfusion Changes After Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial

    Get PDF
    Osteopathic Manipulative Treatment (OMT) is a therapeutic approach aimed at enhancing the body’s self-regulation focusing on somatic dysfunctions correction. Despite evidence of OMT effectiveness, the underlying neurophysiological mechanisms, as well as blood perfusion effects, are still poorly understood. The study aim was to address OMT effects on cerebral blood flow (CBF) in asymptomatic young volunteers as measured by Magnetic Resonance Arterial Spin Labeling (ASL) method. Thirty blinded participants were randomized to OMT or placebo, and evaluated with an MRI protocol before manual intervention (T0), immediately after (T1), and 3 days later (T2). After T0 MRI, participants received 45 min of OMT, focused on correcting whole body somatic dysfunctions, or placebo manual treatment, consisting of passive touches in a protocolled order. After treatment, participants completed a de-blinding questionnaire about treatment perception. Results show significant differences due to treatment only for the OMT group (OMTg): perfusion decreased (compared to T0) in a cluster comprising the left posterior cingulate cortex (PCC) and the superior parietal lobule, while increased at T2 in the contralateral PCC. Furthermore, more than 60% of participants believed they had undergone OMT. The CBF modifications at T2 suggest that OMT produced immediate but reversible effects on CBF

    Brain connectomics' modification to clarify motor and nonmotor features of myotonic dystrophy type 1

    Get PDF
    The adult form of myotonic dystrophy type 1 (DM1) presents with paradoxical inconsistencies between severity of brain damage, relative preservation of cognition, and failure in everyday life. This study, based on the assessment of brain connectivity and mechanisms of plasticity, aimed at reconciling these conflicting issues. Resting-state functional MRI and graph theoretical methods of analysis were used to assess brain topological features in a large cohort of patients with DM1. Patients, compared to controls, revealed reduced connectivity in a large frontoparietal network that correlated with their isolated impairment in visuospatial reasoning. Despite a global preservation of the topological properties, peculiar patterns of frontal disconnection and increased parietal-cerebellar connectivity were also identified in patients' brains. The balance between loss of connectivity and compensatory mechanisms in different brain networks might explain the paradoxical mismatch between structural brain damage and minimal cognitive deficits observed in these patients. This study provides a comprehensive assessment of brain abnormalities that fit well with both motor and nonmotor clinical features experienced by patients in their everyday life. The current findings suggest that measures of functional connectivity may offer the possibility of characterizing individual patients with the potential to become a clinical tool

    Left egocentric neglect in early subacute right-stroke patients is related to damage of the superior longitudinal fasciculus.

    Get PDF
    A typical consequence of stroke in the right hemisphere is unilateral spatial neglect. Distinct forms of neglect have been described, such as space-based (egocentric) and object-based (allocentric) neglect. However, the relationship between these two forms of neglect is still far from being understood, as well as their neural substrates. Here, we further explore this issue by using voxel lesion symptoms mapping (VLSM) analyses on a large sample of early subacute right-stroke patients assessed with the Apples Cancellation Test. This is a sensitive test that simultaneously measures both egocentric and allocentric neglect. Behaviourally, we found no correlation between egocentric and allocentric performance, indicating independent mechanisms supporting the two forms of neglect. This was confirmed by the VLSM analysis that pointed out a link between a damage in the superior longitudinal fasciculus and left egocentric neglect. By contrast, no association was found between brain damage and left allocentric neglect. These results indicate a higher probability to observe egocentric neglect as a consequence of white matter damages in the superior longitudinal fasciculus, while allocentric neglect appears more "globally" related to the whole lesion map. Overall, these findings on early subacute right-stroke patients highlight the role played by white matter integrity in sustaining attention-related operations within an egocentric frame of reference

    Brain connectivity changes in autosomal recessive Parkinson Disease: a model for the sporadic form

    Get PDF
    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients' cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptom

    "I know that you know that I know": neural substrates associated with social cognition deficits in DM1 patients

    Get PDF
    Myotonic dystrophy type-1 (DM1) is a genetic multi-systemic disorder involving several organs including the brain. Despite the heterogeneity of this condition, some patients with non-congenital DM1 can present with minimal cognitive impairment on formal testing but with severe difficulties in daily-living activities including social interactions. One explanation for this paradoxical mismatch can be found in patients' dysfunctional social cognition, which can be assessed in the framework of the Theory of Mind (ToM). We hypothesize here that specific disease driven abnormalities in DM1 brains may result in ToM impairments. We recruited 20 DM1 patients who underwent the "Reading the Mind in the Eyes" and the ToM-story tests. These patients, together with 18 healthy controls, also underwent resting-state functional MRI. A composite Theory of Mind score was computed for all recruited patients and correlated with their brain functional connectivity. This analysis provided the patients' "Theory of Mind-network", which was compared, for its topological properties, with that of healthy controls. We found that DM1 patients showed deficits in both tests assessing ToM. These deficits were associated with specific patterns of abnormal connectivity between the left inferior temporal and fronto-cerebellar nodes in DM1 brains. The results confirm the previous suggestions of ToM dysfunctions in patients with DM1 and support the hypothesis that difficulties in social interactions and personal relationships are a direct consequence of brain abnormalities, and not a reaction symptom. This is relevant not only for a better pathophysiological comprehension of DM1, but also for non-pharmacological interventions to improve clinical aspects and impact on patients' success in life
    • …
    corecore